
LEÇON N˚ 19 :

Étude de la fonction z 7−→ z−a
z−b où a, b, z

sont complexes. Lignes de niveau pour le
module et l’argument de la fonction f .

Applications.

Pré-requis :
– Transformations du plan : expression complexe, propriétés;
– Nombres complexes : propriétés, module, argument ;
– Théorème de l’arc capable.

On se place dans le pan complexeP muni d’un repère orthonormal direct(O,~ı,~).

19.1 Etude de la fonctionf

19.1.1 Domaine de définition, bijectivité

Théorème 1 :f est une bijection deC\{b} dansC\{1}, sa réciproque est :

f−1 : z 7−→
bz − a

z − 1
.

démonstration: f est clairement définie surC\{b}. Sia = b, on af(z) = 1 pour tout complexez.
On suppose donc dans la suite quea 6= b. Soit alorsz ∈ C\{b}.

f(z) = z′ ⇔
z − a

z − b
= z′ ⇔ z − a = z′z − z′b

⇔ z(1 − z′) = −z′b + a ⇔ z =
z′b − a

z′ − 1
(z′ 6= 1).

�

19.1.2 Construction deM ′ = f(M)

Proposition 1 : Deux trianglesABC et A′B′C′ sont semblables si et seulement si

c − a

b − a
=

c′ − a′

b′ − a′

.
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démonstration: On notea, b, c, a′, b′, c′ les affixes respectives deA, B, C, A′, B′, C ′ dans le plan
complexe. On a alors :

Deux trianglesABC etA′B′C ′sont semblables

⇔
AC

AB
=

A′C ′

A′B′
et (

−−→
A′B′,

−−→
A′C ′) = (

−−→
AB,

−→
AC) (mod 2π)

⇔

∣
∣
∣
∣

c − a

b − a

∣
∣
∣
∣
=

∣
∣
∣
∣

c′ − a′

b′ − a′

∣
∣
∣
∣

et arg

(
c − a

b − a

)

= arg

(
c′ − a′

b′ − a′

)

(mod 2π)

⇔
c − a

b − a
=

c′ − a′

b′ − a′
,

car ces deux nombres complexes ont même module et même argument. �

Si M,M ′, A,B,C sont cinq points d’affixes respectivesz, z′, a, b, 1, alors :

z′ = f(z) ⇔
z′ − 0

1 − 0
=

z − a

z − b
⇔

z − a

z − b
=

0 − z′

0 − 1
.

D’après la proposition précédente, on sait alors que les trianglesMBA et OCM ′ sont semblables, ce qui
permet donc la construction du pointM ′ :

~ı

~

bc

bc

bc

A
B

M
rs

O
rs

C

rs

M ′

19.1.3 Décomposition def

Remarquons que

f(z) =
z − a

z − b
= 1 +

b − a

z − b
= 1 + (b − a)

(
1

z − b

)

.

D’où le théorème suivant :

Théorème 2 :f se décompose enf = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1, où :

* f1 : z 7−→ z − b est la translation de vecteur
−→
OB d’affixe −b ;

* f2 : z 7−→
1

z
est l’inversion de pôleO et de rapport 1 (voir définition ci-dessous) ;

* f3 : z 7−→ z est la réflexion par rapport à l’axe des réels ;
* f4 : z 7−→ (b − a)z est la similitude de rapport |b − a| et d’anglearg(b − a) ;
* f5 : z 7−→ 1 + z est la translation de vecteur

−→
OC d’affixe 1.
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Définition 1 : On appelle inversion de pôleΩ et de puissancek, l’application
{

P\{Ω} −→ P\{Ω}
M 7−→ M ′

telle queΩ,M,M ′ soient alignés et
−−→
ΩM ·

−−→
ΩM ′ = k.

En langage complexe, voyons ce que cela donne :

∃ λ ∈ R |
−−→
ΩM ′ = λ

−−→
ΩM (1)

−−→
ΩM ·

−−→
ΩM ′ = k ⇒ λ =

k

‖
−−→
ΩM‖2

La relation (1) donne donc

−−→
ΩM ′ = k

−−→
ΩM

‖
−−→
ΩM‖2

⇔ z′ − ω = k
z − ω

(z − ω)(z − ω)
=

k

z − ω
⇔ z′ = ω +

k

z − ω
.

Proposition 2 :

(a) Pour toute droite D deP, il existe un couple(ω, ρ) ∈ C∗ × R tel que

M(z) ∈ D ⇔ zω + zω + ρ = 0 ;

(b) Réciproquement, pour tout couple(ω, ρ) ∈ C∗ × R, l’ensemble

{M(z) ∈ P | zω + zω + ρ = 0}

est une droite de vecteur normal~n(ω) ;

(c) Pour tout cercleC ∈ P de centreΩ et de rayonr > 0, il existe(ω, k) ∈ C × R tel que

M(z) ∈ C ⇔ z z − zω − zω + k = 0 ;

(d) Réciproquement, pour tout(ω, k) ∈ C × R, on a

{M(z) ∈ P | z z − zω − zω + k = 0} =







∅ si |ω|2 < k,
{Ω(ω)} si |ω|2 = k,

C (Ω,
√

|ω|2 − k) si |ω|2 > k,

où C (Ω,
√

|ω|2 − k) désigne le cercle de centreΩ d’affixe ω et de rayon
√

|ω|2 − k.

démonstration:
(a) Considérons une droiteD du plan, d’équationax + by + c = 0, oùa, b, c sont trois réels tels que

a et b soient non nuls. Posonsz = x + iy etω = a + ib. Alors

M(z) ∈ D ⇔ ax + by + c = 0 ⇔ ℜe(ωz) + c = 0

⇔
1

2
(ωz + ωz) + c = 0 ⇔ ωz + ωz + 2c = 0.
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Il suffit alors de poserρ = 2c ∈ R pour arriver au résultat.

(b) Réciproquement, et avec les mêmes notations que précédemment,

{M(z) ∈ P | ωz + ωz + ρ = 0} = {M(z) ∈ P | 2ℜe(ωz) + ρ = 0}

= {M(z) ∈ P | 2(ax + by) + ρ = 0}

=
{

M(z) ∈ P | ax + by +
ρ

2
= 0

}

,

ce qui correspond bien à l’équation d’une droite dont le vecteur normal admet pour coordonnées
(a, b), donc d’affixeω.

(c) SoitC le cercle de centreΩ(ω) (on poseω = a + ib) et de rayonr > 0. Alors

M(z) ∈ C ⇔ ΩM2 = r2 ⇔ |z − ω|2 = r2

⇔ (z − ω)(z − ω) = r2 ⇔ (z − ω)(z − ω) = r2

⇔ zz − ωz − ωz + ωω = r2

⇔ zz − ωz − ωz + a2 + b2 − r2

︸ ︷︷ ︸

∈ R

= 0.

En posantk = a2 + b2 − r2, on arrive bien au résultat attendu.

(d) Réciproquement, en posantz = x + iy etω = a + ib, on a

zz − ωz − ωz + k = 0 ⇔ x2 + y2 − 2(ax + by) + k = 0

⇔ (x − a)2 + (y − b)2 − a2 − b2 + k = 0

⇔ (x − a)2 + (y − b)2 = |ω|2 − k.

Il y a alors trois cas à distinguer :
– si |ω|2 < k, alors il n’y a pas de solution, et l’ensemble cherché est vide.
– si |ω|2 = k, alors (x − a)2 + (y − b)2 = 0, donc(a, b) = (0, 0) et l’ensemble cherché est le

pointΩ.
– si |ω|2 > k, alors en posantr2 = |ω|2 − k, on trouve l’équation d’un cercle de centreΩ(ω) et

de rayonr.

�

Proposition 3 : Soitϕ2 une inversion de pôleO et de puissance1 (ϕ2 est l’application deP associée
à f2). L’application ϕ2 transforme :

(i) une droite passant parO privée deO en la même droite ;

(ii) une droite ne passant pas parO en un cercle passant parO privé de O ;

(iii) un cercle de centreO de rayonr > 0 en un cercle de rayon1/r de centreO ;

(iv) un cercle passant parO privé de O en une droite ne passant pas parO ;

(v) un cercle ne passant pas parO en un cercle ne passant pas parO.

démonstration: Dans toute cette démonstration, on notera·∗ l’ensemble· privé de l’origineO.
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(i) Une droiteD passant parO signifie qu’elle est d’équation complexezω + zω = 0. Le fait qu’elle
soit privée deO signifie simplement quez 6= 0. Alors :

ϕ2(D
∗) :

1

z
ω +

1

z
ω = 0 ⇔

zω

zz
+

ωz

zz
= 0

⇔ zω + zω = 0.

Puisqueϕ2(D
∗) etD∗ ont la même équation, ces deux objets sont les mêmes.

(ii) On procède selon le même raisonnement que précédemment :

D : ωz + ωz + ρ = 0 (ω, ρ) ∈ C
∗ × R

∗

⇒ ∀ z 6= 0, ϕ2(D) :
1

z
ω +

1

z
ω + ρ = 0

⇒ ∀ z 6= 0, ϕ2(D) : ωz + ωz + ρzz = 0

⇒ ∀ z 6= 0, ϕ2(D) : zz −

(

−
ω

ρ

)

z −

(

−
ω

ρ

)

z = 0.

C’est l’équation d’un cercle passant parO, privé deO (car z 6= 0).

(iii) Le cercleC de centreO et de rayonr > 0 admet pour équation complexezz + r2 = 0. Alors,
pour toutz 6= 0,

ϕ2(C ) :
1

zz
+ r2 = 0 ⇔ 1 + r2zz = 0 ⇔ zz +

(
1

r

)
2

= 0.

ϕ2(C ) est donc un cercle de centreO et de rayon1/r.

(iv) Le cercleC de centreO et de rayonr > 0 admet pour équation complexezz − ωz − ωz = 0.
Alors, pour toutz 6= 0,

ϕ2(C
∗) :

1

zz
−

ω

z
−

ω

z
= 0 ⇔ 1 − ωz − ωz = 0 ⇔ zω + zω − 1 = 0.

ϕ2(C
∗) est une droite ne passant pas parO.

(v) Le cercleC de centreO et de rayonr > 0 admet pour équation complexezz −ωz −ωz + k = 0,
où (ω, k) ∈ C∗ × R∗ tel que|ω2| > k. Alors, pour toutz 6= 0,

ϕ2(C
∗) :

1

zz
−

ω

z
−

ω

z
+ k = 0 ⇔ 1 − ωz − ωz + kzz = 0 ⇔ zz −

(
ω

k

)

z −
ω

k
z + 1 = 0.

ϕ2(C
∗) est donc un cercle ne passant pas par0.

�

Puisque les translations, réflexions et similitudes conservent les droites et les cercles, l’applicationϕ (ap-
plication deP associée àf ) transforme les droite et cercle en droite ou cercle, à l’image de la proposition
précédente. On obtient donc le théorème suivant, que l’on nedémontrera pas :
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Théorème 3 : SoitD une droite etC un cercle de centreI et de rayonr > 0. Alors

(i) Si B ∈ D , alors ϕ(D\{B}) est une droite passant parC, privée deC ;

(ii) Si B 6∈ D , alors ϕ(D) est un cercle passant parC, privé de C ;

(iii) Si I = B, alors ϕ(C ) est le cercle de centreC de rayon 1

r
|b − a| ;

(iv) Si B ∈ C , alors ϕ(C \{B}) est une droite ne passant pas parC ;

(v) Si B 6∈ C , alors ϕ(C ) est un cercle ne passant pas parC.

19.2 Lignes de niveaux

19.2.1 Pour le module

On noteΓk = {M ∈ P\{B} | |f(z)| = k} =

{

M ∈ P\{B} |

∣
∣
∣
∣

z − a

z − b

∣
∣
∣
∣
= k

}

.

Proposition 4 : Soitk ∈ R. Alors :

(a) sik < 0, alors Γk = ∅ ;

(b) si k = 0, alors Γk = {A} ;

(c) sik = 1, alors Γk est la médiatrice du segment[AB] ;

(d) sinon,Γk est le cercle de diamètre[IJ ], où

I = bar{(A, 1), (B, k)} et J = bar{(A, 1), (B, −k)}.

démonstration:

(a) Trivial, car un module est toujours positif.

(b)

∣
∣
∣
∣

z − a

z − b

∣
∣
∣
∣
= 0 ⇒ |z − a| = 0 ⇔ Γk = {A}.

(c)

∣
∣
∣
∣

z − a

z − b

∣
∣
∣
∣
= 1 ⇒ |z − a| = |z − b| ⇔ MA = MB, d’où le résultat.

(d)

∣
∣
∣
∣

z − a

z − b

∣
∣
∣
∣

= k ⇒ MA2 = k2MB2 ⇔ (
−−→
MA + k

−−→
MB) · (

−−→
MA − k

−−→
MB) = 0 ⇔

−−→
MI ·

−−→
MJ = 0,

donc[MI] ⊥ [MJ ] etΓk est le cercle de diamètre[IJ ].

�

Remarque 1 : Pour la construction deI, J et deΓk associé, on donne ce qui suit :

SoitC ∈ P\(AB) tel que
CA

CB
= k, alorsI (resp.J) est le pied de la bissectrice intérieure (resp. extérieure) à̂ACB.
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19.2.2 Pour l’argument

Proposition 5 : Pour tout θ ∈ R, on note

Γθ =

{

M(z) ∈ P\{A, B} | arg

(
z − a

z − b

)

= θ (mod π)

}

et

Γ′

θ
=

{

M(z) ∈ P\{A, B} | arg

(
z − a

z − b

)

= θ (mod 2π)

}

.

On distingue alors plusieurs cas :

(i) Si θ = 0 (mod π), alors Γθ = (AB)\{A, B} ;

(ii) Si θ = 0 (mod 2π), alors Γ′

θ
= (AB)\[AB] ;

(iii) Si θ = π (mod 2π), alors Γ′

θ
= ]AB[ ;

Si θ 6= 0 (mod π), alors on définit un point T ∈ P\{B} tel que (
−→
BT,

−→
BA) = θ (mod 2π).

Alors

(iv) Γθ = C \{A, B}, où C est le cercle passant parA et B, tangent à(BT ) enB ;

(v) Γ′

θ
est l’arc ouvert AB délimité par le demi-plan de frontière (AB) et ne contenant pasT .

Voici les figures illustrant les cas (iv) et (v) :

b
O

bc

B
bc

A

b
B′

b

T

Γθ

θ

b
O

bc

B
bc

A

b
B′

b

T

Γ′

θ

θ

cas (iv) cas (v)

démonstration: Notons quearg( z−a

z−b
) = arg(z−a)−arg(z−b) = (~i,

−−→
AM)−(~i,

−−→
BM) = (

−−→
BM,

−−→
AM)

(mod 2π).

(i) (
−−→
BM,

−−→
AM) = 0 (mod π), doncM ∈ (AB)\{A, B}.

(ii) (
−−→
BM,

−−→
AM) = 0 (mod 2π), doncM ∈ (AB)\[AB].

(iii) (
−−→
BM,

−−→
AM) = π (mod 2π), doncM ∈]AB[.

(iv) SoitB′ le point diamétralement opposé àB sur C . Alors B′BT est un triangle rectangle enB,
ainsi queB′AB enA. Alors

(
−−→
BA,

−−→
BB′) =

π

2
− θ et (

−−→
B′B,

−−→
B′A) = π −

π

2
− (

π

2
− θ) = θ (mod π).

Donc d’après le théorème de l’arc capable,M ∈ C \{A, B}.
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(v) Même démonstration que précédemment, en remarquant que les mesures principales sont de même
signe dans le même demi-plan.

�

19.3 Applications

19.3.1 Colinéarité et orthogonalité

Théorème 4 : SoientA, B et M 6= B trois points deP. Les droites(AM) et (BM) sont parallèles
(resp. perpendiculaires) si et seulement si

z − a

z − b
∈ R (resp. ∈ iR).

démonstration: On suppose les trois points distincts, sinon le résultat est évident. On a alors

z − a

z − b
∈ R ⇔ arg

(
z − a

z − b

)

= 0 (mod π) ⇔ (
−−→
MB,

−−→
MA) = 0 (mod π) ⇔ M ∈ (AB)\{A, B},

d’où A, B etM sont alignés, ou les droites(AM) et (BM) sont parallèles. De plus,

z − a

z − b
∈ iR ⇔ arg

(
z − a

z − b

)

=
π

2
(mod π) ⇔ (

−−→
MB,

−−→
MA) =

π

2
(mod π),

et les vecteurs
−−→
AM et

−−→
MB sont bien orthogonaux. �

19.3.2 Critère de cocyclicité

Théorème 5 : Quatre points distinctsA, B, C, D d’afixes respectivesa, b, c, d sont alignés ou cocy-
cliques si et seulement si

a − c

a − d
÷

b − c

b − d
∈ R.

démonstration: Notons tout d’abord que
a − c

a − d
÷

b − c

b − d
est appelébi-rapportdu quadruplet

(A, B, C, D), et est noté[A, B, C, D]. On a donc

[A, B, C, D] ∈ R ⇔ arg

(
a − c

a − d

)

= arg

(
b − c

b − d

)

(mod π)

⇔ (
−−→
DA,

−→
CA) = (

−−→
DB,

−−→
CB) (mod π)

⇔ A, B, C, D cocylciques (d’après le théorème de l’arc capable) ou alignés.

�


