LEÇON N° 5:

Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l'ensemble d'épreuves des fini). Applications à des calculs de probabilité.

Pré-requis:

- Opérations sur les ensembles, cardinaux;
- Espaces probabilisés;
- Calcul de probabilités.

On se place dans un espace probabilisé $(\Omega, \mathscr{P}(\Omega), P)$.

Introduction: On se donne le tableau suivant représentant la proportion de garçons (G) et de filles (F) étudiant l'anglais (A) ou l'espagnol (E) en 1^{re} langue.

	A	Е	
G	48	22	70
F	53	27	80
	101	49	150

Quelle est la probabilité qu'un élève fasse de l'anglais sachant que c'est un garçon :

$$\frac{|G \cap A|}{|G|} = \frac{48}{70}.$$

On constate aussi que

$$\frac{P(G \cap A)}{P(G)} = \frac{48/150}{70/150} = \frac{48}{70}.$$

5.1 Probabilité conditionnelle

Théorème 1 : Soit $B\in \mathscr{P}(\Omega)$ telle que $\mathrm{P}(B) \neq 0$. Alors l'application

$$egin{array}{lll} \mathrm{P}_B:\mathscr{P}(\Omega) &\longrightarrow & [0,1] \ A &\longmapsto & P_B(A) = rac{\mathrm{P}(A\cap B)}{\mathrm{P}(B)} \end{array}$$

est une probabilité sur Ω .

démonstration: Puisque pour toute partie B de Ω , $B \cap \Omega = B$, il est clair que $P_B(\Omega) = 1$. Soient alors $A_1, A_2 \in \mathscr{P}(\Omega)$ tels que $A_1 \cap A_2 = \varnothing$. Alors

$$P_{B}(A_{1} \dot{\cup} A_{2}) = \frac{P((A_{1} \dot{\cup} A_{2}) \cap B)}{P(B)} = \frac{P((A_{1} \cap B) \dot{\cup} (A_{2} \cap B))}{P(B)}$$
$$= \frac{P(A_{1} \cap B)}{P(B)} + \frac{P(A_{2} \cap B)}{P(B)} = P_{B}(A_{1}) + P_{B}(A_{2}).$$

 P_B est donc bien une probabilité sur Ω .

Définition 1 : Soient $A, B \in \mathscr{P}(\Omega)$ tels que $P(B) \neq 0$. Le nombre $P_B(A)$ est appelé probabilté conditionnelle de A sachant (que) B (est réalisé), aussi notée P(A|B).

Conséquences directes :

- Si $A \cap B = \emptyset$, alors $P_B(A) = 0$;
- Si $B \subset A$, alors $P_B(A) = 1$ (car $A \cap B = B$);
- Si $P(A) \neq 0$ et $P(B) \neq 0$, alors $P(A \cap B) = P_B(A) P(B) = P_A(B) P(A)$.

Exemple : Une urne contient deux boules rouges et trois bleues. On fait deux tirages successifs sans remise. Quelle est la probabilité de tirer deux boules bleues ?

Soient B_i l'événement « on tire une boule bleue au *i*-ième tirage » pour $i \in \{1, 2\}$. Alors

$$P(B_1 \cap B_2) = P_{B_1}(B_2) P(B_1) = \frac{1}{2} \frac{3}{5} = \frac{3}{10}.$$

Théorème 2 (formule des probabilités composées) : Soient $A_1,\ldots,A_n\in \mathscr{P}(\Omega)$ tels que $\mathrm{P}(A_1\cap\cdots\cap A_n)\neq 0$. Alors

$$\mathrm{P}(A_1\cap\cdots\cap A_n)=\prod_{i=1}^n\mathrm{P}(A_i|A_{i+1}\cap\cdots\cap A_n).$$

démonstration: On effectue une récurrence sur l'entier $n \in \mathbb{N}^*$:

- Initialisation : Pour n = 1, le résultat est évident.
- **Hérédité :** Supposons le résultat vrai au rang n-1, c'est-à-dire vrai pour n-1 parties de A dont la probabilité de l'intersection ne soit pas nulle. Alors

$$P(A_1 \cap (A_2 \cap \dots \cap A_n)) = P(A_1 | A_2 \cap \dots \cap A_n) P(A_2 \cap \dots \cap A_n)$$

$$\stackrel{\textit{H.R.}}{=} P(A_1 | A_2 \cap \dots \cap A_n) (P(A_2 | A_3 \cap \dots \cap A_n) \dots$$

$$P(A_{n-1} | A_n) P(A_n)),$$

et le résultat est ainsi démontré au rang n, ce qui achève la récurrence.

Théorème 3 (formule des probabilités totales) : Soit $(B_k)_{1\leqslant k\leqslant n}$ une partition finie de $\Omega.$ Alors

$$orall \ A \in \mathscr{P}(\Omega), \quad \mathrm{P}(A) = \sum_{k=1}^n \mathrm{P}_{B_k}(A) \, \mathrm{P}(B_k).$$

démonstration: Puisque $A = \bigcup_{k=1}^{n} (B_k \cap A)$, on a l'égalité

$$P(A) = P\left(\bigcup_{k=1}^{n} (B_k \cap A)\right) = \sum_{k=1}^{n} P(B_k \cap A) = \sum_{k=1}^{n} P_{B_k}(A) P(B_k).$$

Remarques 1:

- Cette formule reste vraie si $A \subset \bigcup B_k$;
- $-\Omega = B \dot{\cup} \overline{B}$, donc on a en particulier

$$P(A) = P_B(A) P(B) + P_{\overline{B}}(A) P(\overline{B}).$$

Corollaire 1 (formule de Bayès) : Soient $(B_k)_{1 \le k \le n}$ une partition finie de $\Omega, A \in \mathscr{P}(\Omega)$ telle que $\mathrm{P}(A) \ne 0$. Alors

$$\forall k \in \{1,\ldots,n\}, \quad \mathrm{P}_A(B_k) = \frac{\mathrm{P}_{B_k}(A)\,\mathrm{P}(B_k)}{\sum_{i=1}^n \mathrm{P}_{B_i}(A)\,\mathrm{P}(B_i)}.$$

démonstration: $P(A) \neq 0$, donc $P_A(B_k) = P(A \cap B_k)/P(A)$. Or $P(A \cap B_k) = P_{B_k}(A) P(B_k)$ et d'après la formule des probabilités totales, puisque les B_k forment une partition de Ω , on a $P(A) = \sum_{i=1}^n P_{B_i}(A) P(B_i)$.

Exemple 1 : On dispose de trois urnes contenant chacune un certain nombre de boules colorées, comme indiqué dans le tableau ci-dessous :

	boules bleues	boules rouges
U_1	1	3
U_2	3	2
U_3	4	2

On tire au hasard une urne, puis une boule de cette urne. La boule tirée est bleue (B), mais quelle est la probabilité qu'elle provienne de U_1 ?

$$P_B(U_1) = \frac{P_{U_1}(B) P(U_1)}{\sum_{i=1}^3 P_{U_i}(B) P(U_i)} = \frac{\frac{1}{4} \cdot \frac{1}{3}}{\frac{1}{3} \left(\frac{1}{4} + \frac{3}{5} + \frac{4}{6}\right)} = \frac{27}{80}.$$

Exemple 2 : Cinq personnes sur 1 000 sont proteuses d'un virus. On fait un test dont les conclusions sont que 5% des non malades et 99% des malades sont décelés comme étant malades. Quelle est la probabilité qu'une personne soit malade (M) sachant que son test est positif (T)?

$$P_T(M) = \frac{P_M(T) P(M)}{P_M(T) P(M) + P_{\overline{M}}(T) P(\overline{M})} = \frac{\frac{99}{100} \cdot \frac{5}{1000}}{\frac{99}{100} \cdot \frac{5}{1000} + \frac{5}{1000} \cdot \frac{995}{1000}} = \frac{99}{1094} \approx 9\%.$$

On peut en déduire que ce test n'est pas à préconiser, mais plutôt à proscrire!!

5.2 Evénements indépendants

Définition 2 : Soient $A, B \in \mathscr{P}(\Omega)$. A et B sont dits indépendants si

$$P(A \cap B) = P(A) P(B).$$

Remarques 2:

- Quelque soit $A \in \mathcal{P}(\Omega)$, il est toujours indépendant de Ω et \emptyset ;
- Intuitivement, on dirait plutôt que A et B sont indépendants si, par exemple, $P_B(A) = P(A)$, mais ce n'est pas si intuitif qu'il n'y paraît, comme le montre l'exemple ci-dessous;
- Par contre, on a équivalence enter ces égalités, c'est-à-dire que pour $A, B \in \mathscr{P}(\Omega)$,

$$P(A \cap B) = P(A)P(B) \Leftrightarrow P_A(B) = P(B) \Leftrightarrow P_B(A) = P(A).$$

Ces équivalences sont évidentes du fait que $P(A \cap B) = P_A(B) P(A) = P_B(A) P(B)$.

Exemple: On tire un numéro au hasard dans chacun des exemples ci-dessous. On note A l'événement « On a un nombre pair » et B l'événement « On a un multiple de trois. »

• Soit $\Omega = \{1, \dots, 20\}$. On détermine que

$$P(A) = \frac{1}{2}, P(B) = \frac{3}{10}, \quad P(A \cap B) = \frac{3}{20} = P(A)P(B),$$

de sorte que les événements A et B soient indépendants.

• Par contre, si $\omega = \{1, \dots, 21\}$, alors trouve que

$$P(A) = \frac{10}{21}, P(B) = \frac{1}{3}, \quad P(A \cap B) = \frac{3}{21} = \frac{1}{7} \neq P(A)P(B),$$

de sorte que les événements A et B ne soient pas indépendants dans ce cas.

• Exercice : Calculer aussi $P_A(B)$ et $P_B(A)$ pour chacun des deux cas et conclure quant à l'indépendance en comparant respectivement ces quantités à P(B) et P(A).

Proposition 1 : On a équivalence entre :

- (i) A et B sont indépendants ;
- (ii) A et \overline{B} sont indépendants ;
- (iii) \overline{A} et \overline{B} sont indépendants ;
- (iv) \overline{A} et B sont indépendants.

démonstration: On se contentera de montrer que $(i) \Rightarrow (ii)$, les autres cas s'étudiant de manière analogue. Remarquons que $A = (A \cap \overline{B}) \cup (A \cap B)$, de sorte que $P(A \cap \overline{B}) = P(A) - P(A \cap B) = P(A) - P(A) P(B)$ car A et B sont indépendants par hypothèse. On poursuit le calcul : $P(A \cap \overline{B}) = P(A)(1 - P(B)) = P(A) P(\overline{B})$, et on aboutit au résultat.

Remarque 3 : La relation d'indépendance n'est pas transitive, c'est-à-dire que si A et B sont deux événements indépendants, et C un troisième événement tel que B et C le soient aussi, alors A et C ne sont en

général pas indépendants, comme le montre l'exemple qui suit.

Exemple: Au cours de l'année 2002, deux classes de terminale ont réalisé un sondage traduisant les votes entre « jeunes » (J, élèves des deux classes) et « vieux » (V, profs du lycée) qui ont permis de déterminer le président entre deux candidats A et B. Les résultats sont reportés dans ce tableau :

	J		V	
	A	В	A	В
Н	10	15	5	10
F	20	30	10	20

Le calcul détermine que

$$P(J) = \frac{75}{120} = \frac{5}{8}, \quad P(F) = \frac{80}{120} = \frac{2}{3} \quad \text{et} \quad P(A) = \frac{45}{120} = \frac{3}{8},$$

et justifie ainsi les égalités $P(J \cap F) = 5/12 = P(J) P(F)$ et $P(F \cap A) = 1/4 = P(F) P(A)$, ce qui fait que les événements J et F, ainsi que F et A sont indépendants. Vérifions alors que J et A ne le sont pas ! En effet, par calcul,

$$P(J \cap A) = \frac{30}{120} = \frac{1}{4}$$
 et $P(J) P(A) = \frac{5}{8} \frac{3}{8} = \frac{15}{64}$.

Proposition 2 : Soit $B \subset C$. Si A et B sont indépendants, ainsi que A et C, alors A et $C \backslash B$ le sont aussi.

démonstration:
$$A \cap C = (A \cap C \cap B) \dot{\cup} (A \cap C \cap \overline{B}) = (A \cap B) \dot{\cup} (A \cap C \cap \overline{B}) car B \subset C$$
. D'où $P(A \cap C \setminus B) = P(A \cap C) - P(A \cap B) = P(A)(P(C) - P(B)) = P(A)P(C \setminus B)$.

Exercice: On suppose que $B \neq \Omega$. Montrer de deux manières que A et B sont indépendants si et seulement si $P(A|B) = P(A|\overline{B})$.

1. Notons b = P(B) (donc $1 - b = P(\overline{B})$), $\alpha = P(A|B)$ (donc $1 - \alpha = P(\overline{A}|B)$) et $\beta = P(A|\overline{B})$ (donc $1 - \beta = P(\overline{A}|B)$). On trouve alors

$$A \perp B \Leftrightarrow P(A|B) = P(A) \stackrel{\text{rq 1}}{=} P(B) P(A|B) + P(\overline{B}) P(A|\overline{B})$$

$$\Leftrightarrow \alpha = b\alpha + (1-b)\beta$$

$$\Leftrightarrow (1-b)\alpha = (1-b)\beta \Leftrightarrow \alpha = \beta.$$

2. On utilise tout ce qui précède. Supposons l'indépendance établie, alors :

$$P(A|B) = P(A) \Leftrightarrow A \perp B \stackrel{\text{prop } 1}{\Leftrightarrow} A \perp \overline{B} \Leftrightarrow P(A|\overline{B}) = P(A).$$

On en déduit directement que $P(A|B) = P(A|\overline{B})$. Etudier la réciproque en exercice.