

CONTRÔLE N° 8

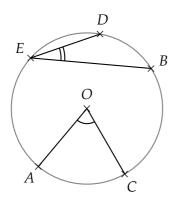
Année scolaire 2013-2014

Classe: 3ème 5

NOM:	Prénom:
Les exercices/questions commençant par	« * » sont à faire directement sur le sujet !
Exercice n° 1 (exo55)/2 points	$M \xrightarrow{A}$
* Complète les intitulés des deux théorèmes suivants :	
Théorème de l'angle inscrit : Si	H 86°
Théorème de l'angle au centre : Si	S

Exercice n° 2 (exo56)/3 points

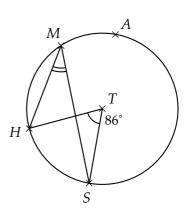
* Voici une figure à compléter :



- a) Repasse de manière visible et en vert l'arc intercepté par l'angle DEB.
- b) Repasse de manière visible et en rouge l'arc intercepté par l'angle AOC.
- c) Complète : Dans cette figure, l'angle au centre est ... et l'angle inscrit est

Exercice n° 3 (exo57)/3 points

Voici une figure:

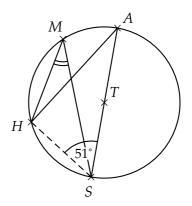


Prénom:

Calcule la mesure de l'angle $\widehat{H}M\widehat{S}$.

Exercice $n^{\circ}4$ (exo58)/3 points

Voici une figure dans laquelle les points A, T et S sont alignés :

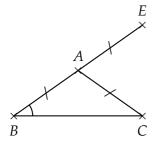


Calcule la mesure de l'angle \widehat{HMS} . (Indication: on pourra commencer par déterminer la nature du triangle HAS.)

Exercice n° 5 (exo59)/6 points

(France métropolitaine, 2010). Dans cet exercice, on étudie la figure ci-contre où:

- ABC est un triangle isocèle tel que AB = AC =
- E est le symétrique de B par rapport à A.



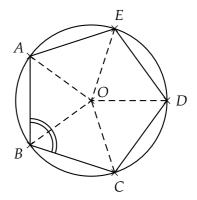
Partie 1 : On se place dans le cas particulier où la mesure de \widehat{ABC} est 37°.

- a) Construire la figure en vraie grandeur.
- b) Quelle est la nature du triangle BCE? Justifier.
- c) Prouver que l'angle \widehat{EAC} mesure 74°.

Partie 2 : Dans cette partie, on se place dans le cas général où la mesure de \widehat{ABC} n'est pas donnée. Florette affirme que pour n'importe quelle valeur de \widehat{ABC} , on a : $\widehat{EAC} = 2\widehat{ABC}$. Florette a-t-il raison? Faire apparaître sur la copie la démarche utilisée.

Exercice n° 6 (exo60)/3 points

Voici une figure:



Calcule la mesure de l'angle \widehat{ABC} sachant que ABCDE est un pentagone régulier.

CONTRÔLE N° 8 CORRIGÉ

Le lundi 24 mars 2014 — Calculatrice autorisée

Année scolaire 2013-2014 Classe : 3^{ème} 5

Exercice n° 1 (exo55)/2 points

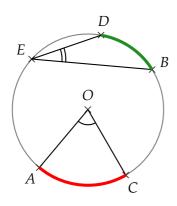
Complète les intitulés des deux théorèmes suivants :

Théorème de l'angle inscrit : Si deux angles inscrits interceptent le même arc de cercle, alors ils ont la même mesure.

Théorème de l'angle au centre : Si un angle inscrit et un angle au centre interceptent le même arc de cercle, alors ils ont la même mesure.

Exercice n° 2 (exo56)/3 points

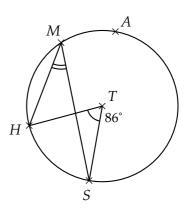
Voici une figure à compléter :



- a) Repasse de manière visible et en vert l'arc intercepté par l'angle \widehat{DEB} .
- b) Repasse de manière visible et en rouge l'arc intercepté par l'angle \widehat{AOC} .
- c) Complète : Dans cette figure, l'angle au centre est ÂOC et l'angle inscrit est DEB.

Exercice n° 3 (exo57)/3 points

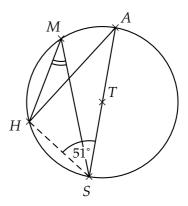
Voici une figure :



Calcule la mesure de l'angle \widehat{HMS} . L'angle inscrit \widehat{HMS} et l'angle au centre \widehat{HTS} interceptent le même petit arc \widehat{HS} . D'après le théorème de l'angle au centre, on a $\widehat{HMS} = \widehat{HTS} \div 2 = 86^{\circ} \div 2 = 43^{\circ}$.

Exercice n° 4 (exo58)/3 points

Voici une figure dans laquelle les points A,T et S sont alignés :



Calcule la mesure de l'angle \widehat{HMS} . (Indication : on pourra commencer par déterminer la na-

Le triangle HAS est inscrit dans le cercle de diamètre [AS] qui est aussi un côté de ce triangle. D'après le théorème du cercle circonscrit, HAS est un triangle rectangle en H. Puisque la somme des mesures de ses angles fait 180° , on a

$$\widehat{HAS} = 180^{\circ} - (90^{\circ} + 51^{\circ}) = 39^{\circ}.$$

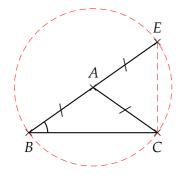
ture du triangle HAS.)

Les deux angles inscrits \widehat{HMS} et \widehat{HAS} interceptent le même petit arc \widehat{HS} . D'après le théorème de l'angle inscrit, on a $\widehat{HMS} = \widehat{HAS} = 39^{\circ}$.

Exercice n° 5 (exo59)/6 points

(*France métropolitaine, 2010*). Dans cet exercice, on étudie la figure ci-contre où :

- ABC est un triangle isocèle tel que AB = AC = 4 cm.
- *E* est le symétrique de *B* par rapport à *A*.



Partie 1 : On se place dans le cas particulier où la mesure de \widehat{ABC} est 37°.

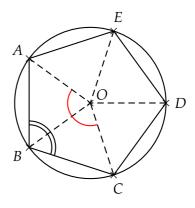
- a) Construire la figure en vraie grandeur. À peu de choses près, cette figure ressemble à celle cidessus.
- b) Quelle est la nature du triangle *BCE*? Justifier. Le triangle *BCE* est inscrit dans le cercle de diamètre [*BE*] qui est aussi un côté de ce triangle. D'après le théorème du cercle circonscrit, le triangle *BCE* est rectangle en *C*.
- c) Prouver que l'angle \widehat{EAC} mesure 74° . L'angle inscrit \widehat{EBC} et l'angle au centre \widehat{EAC} interceptent tous les deux le même petit arc \widehat{CE} . D'après le théorème de l'angle au centre, on a donc $\widehat{EAC} = 2\widehat{EBC} = 2 \times 37^\circ = 74^\circ$.

Partie 2 : Dans cette partie, on se place dans le cas général où la mesure de \widehat{ABC} n'est pas donnée. Florette affirme que pour n'importe quelle valeur de \widehat{ABC} , on a : $\widehat{EAC} = 2\widehat{ABC}$. Florette a-t-il raison? Faire apparaître sur la copie la démarche utilisée. Elle a raison, car en posant $x = \widehat{EBC} = \widehat{ABC}$ et en utilisant le théorème de l'angle au centre dans les mêmes conditions que dans la partie 1, on trouve

Exercice n° 6 (exo60)/3 points

que $\widehat{EAC} = 2\widehat{EBC} = 2 \times x = 2\widehat{ABC}$.

Voici une figure :



Calcule la mesure de l'angle \widehat{ABC} sachant que ABCDE est un pentagone régulier.

Puisque *ABCDE* est un pentagone régulier, chaque angle au centre mesure $360^{\circ} \div 5 = 72^{\circ}$, donc $\widehat{AOC} = 3 \times 72^{\circ} = 216^{\circ}$.

L'angle au centre \widehat{AOC} et l'angle inscrit \widehat{ABC} interceptent le même grand arc \widehat{AC} , donc d'après le théorème de l'angle aucentre, on a : $\widehat{ABC} = \widehat{AOC} \div 2 = 216^{\circ} \div 2 = 108^{\circ}$.