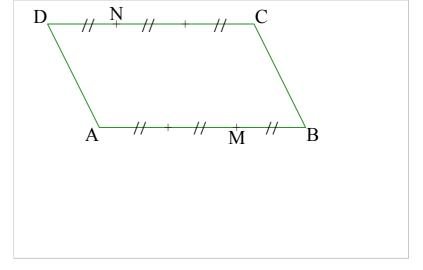

Exercice 1 (sommes et différences de vecteurs) - 6 points

Pour chacun des six cas ci-dessus, placer le point M tel que $\overrightarrow{AM} = \overrightarrow{u} + \overrightarrow{v}$ et le point N tel que $\overrightarrow{AN} = \overrightarrow{u} - \overrightarrow{v}$.


Exercice 2 (petites démonstrations) - 6 points

- 1. Démontrer que pour tous points A, B, C et D du plan, on a $\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{BD}$.
- 2. [AB] est un segment de longueur 9 cm.
 - a) Démontrer que pour tout point M, l'égalité $\overrightarrow{MA} + 2 \overrightarrow{MB} = \overrightarrow{0}$ est équivalente à $3 \overrightarrow{MA} + 2 \overrightarrow{AB} = \overrightarrow{0}$.
 - b) Pourquoi existe-t-il un seul point M vérifiant cette égalité ? (énoncer une propriété du cours)
 - c) Construire ce point.
- 3. ABC est un triangle quelconque.
 - a) Construire les points B' et C' tels que $\overrightarrow{AB'} = 3 \overrightarrow{AB}$ et $\overrightarrow{B'C'} = 3 \overrightarrow{BC}$.
 - b) Les points A, C et C' sont-ils alignés ? Justifier soigneusement.

Exercice 3 (dans un parallélogramme) - 7 points

La figure ci-contre est donnée, et sera complétée au fur et à mesure des questions.

- 1. Montrer que BMDN est un parallélogramme.
- 2. La droite (AC) coupe (DM) en E et (BN) en F. Déterminer les réels k, k' et h tels que : $\overrightarrow{AE} = k \overrightarrow{AC}$; $\overrightarrow{EF} = k' \overrightarrow{AC}$ et $\overrightarrow{AF} = h \overrightarrow{AC}$. Justifier soigneusement le raisonnement.
- 3. Montrer que MENF est un parallélogramme.
- 4. La droite (BC) coupe (DM) en G et (MN) en H.
 - a) Démontrer que M est le milieu de [NH].
 - b) Démontrer que G est le milieu de [BH]. on pourra construire le milieu N' de [AM], G' celui de [NN'], et voir quel est le symétrique de G' par rapport à M.

